

SANYO Semiconductors DATA SHEET

LA79200V -

Monolithic Linear IC

For extention of I²C-BUS compatible microcomputer I/O port

Overview

This LA79200V is a for extention of I²C-BUS compatible microcomputer I/O port.

Functions

- 8 bit Expanded I/O port with LED Driver
- 2 bit DAC×2

Specifications

Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V ₁ max		7.0	V
Allowable power dissipation	Pd max	Ta ≤ 65°C *	300	mW
Operating temperature	Topr		-10 to +65	°C
Storage temperature	Tstg		-55 to +150	°C

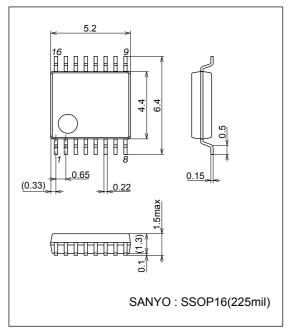
^{*} Mounted on a board: 114.3×76.1×1.6mm³, glass epoxy.

Operating Conditions at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V ₁		5.0	V
Operating supply voltage range	V ₁ op		4.5 to 5.5	V

- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

Electrical Characteristics at Ta = 25°C, $V_1 = 5V$


Parameter	Cumbal	Conditions		Ratings			
Parameter	Symbol	Conditions	min	typ	max	Unit	
[Circuit voltage, current]							
Supply current	I ₁	V ₁ =5V	7.2	8.0	8.8	mA	
Supply voltage	V ₁		4.5	5.0	5.5	V	
[SCL input/SDA input output]							
LOW level input voltage	ViL		0		0.8	V	
HIGH level input voltage	ViH		3.5		5.0	V	
DATA saturation voltage	VDAsat				0.35	V	
[I/O s]							
LOW level input voltage	VIOiL		0		0.8	V	
HIGH level input voltage	VIOiH		3.5		5.0	V	
LOW level saturation voltage	VIOsat				0.35	V	
[Slave address select]							
LOW level input voltage	VAiL		0		0.8	V	
[D/A output]							
D/A LOW level output voltage	VDAL		0		0.3	V	
D/A MID1 level output voltage	VDAM1		1.7	2	2.3	V	
D/A MID2 level output voltage	VDAM2		2.7	3	3.3	V	
D/A HIGH level output voltage	VDAH		3.8	4.1	4.4	V	

Notes

- (1) Write "Hi" in the register of each port with IIC Bus when using each port as an input.
- (2) Clock rate of IIC Bus can be used at 400kHz or less.

Package Dimensions

unit : mm 3178B

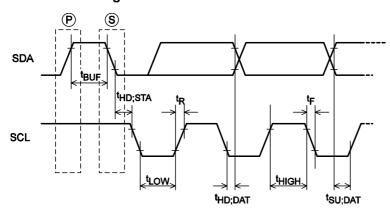
Test Conditions at Ta = 25°C, $V_{CC} = V_1 = 5.0$ V

Parameter	Symbol	Test point	Input signal	Test method	Bus conditions
[Circuit voltage, current]	,		1 0		
Supply current (pin 1)	I ₁	1	IC Add: 0111 1100	Apply a voltage of 5.0V to pin 1 and measure the incoming DC current (mA).	Initial
			Sub Add: 0000 0000		
			Data Add: 0000 0000		
[SCL input/SDA input output]		I .			l
LOW level input voltage	ViL		IC Add:	Measure the DC voltage at LOW level of	Initial
		15	0111 1100 Sub Add:	the signal entered in pins 15 and 16.	
		16	0000 0000		
			Data Add: 0000 0000		
HIGH level input voltage	ViH		IC Add:	Measure the DC voltage at HIGH level of	Initial
		15	0111 1100	the signal entered in pins 15 and 16.	
			Sub Add:		
		16	0000 0000		
			Data Add: 0000 0000		
DATA pin saturation voltage	VDAsat		IC Add:	Allow 3.3mA to flow through DATA pin	Initial
,		16	0111 1101	and measure the DC voltage when ACK is returned.	
[I/O s]					
LOW level input voltage	VIOiL		IC Add:	Measure the DC voltage of pins 5 to 8	Initial
		5	0111 1100	and 10 to 13.	
			Sub Add:		
		to	0000 0000		
		8	Data Add: 0000 0000		
		10			
		to			
		13			
HIGH level input voltage	VIOiH		IC Add:	Measure the DC voltage of pins 5 to 8	PEX0:1
		5	0111 1100	and 10 to 13.	PEX1:1 PEX2:1
			Sub Add:		PEX3:1
		to	0000 0000		PEX4:1
		8	Data Add:		PEX5:1 PEX6:1
			1111 1111		PEX7:1
		10			
		to			
		13			

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Test point	Input signal	Test method	Bus conditions
LOW level saturation voltage	VIOsat	5 to 8 10 to	IC Add: 0111 1100 Sub Add: 0000 0000 Data Add: 0000 0000	Measure the DC voltage when 3.3mA is allowed to flow through pin 13.	Initial
[D/A output]					
D/A output voltage H	VDAH	3	IC Add: 0111 1100 Sub Add: 0000 0001 Data Add: 0000 0000	Measure the DC voltage of pins 5 to 8 and 10 to 13.	Initial
D/A output voltage MID2	VDAM2	3	IC Add: 0111 1100 Sub Add: 0000 0001 Data Add: 0100 0100	Measure the DC voltage of pins 5 to 8 and 10 to 13.	DA.OUTPUT_1:1 DA.OUTPUT_2:1
D/A output voltage MID1	VDAM1	3	IC Add: 0111 1100 Sub Add: 0000 0001 Data Add: 1000 1000	Measure the DC voltage of pins 5 to 8 and 10 to 13.	DA.OUTPUT_1:2 DA.OUTPUT_2:2
D/A output voltage L	VDAL	3	IC Add: 0111 1100 Sub Add: 0000 0001 Data Add: 1100 1100	Measure the DC voltage of pins 5 to 8 and 10 to 13.	DA.OUTPUT_1:3 DA.OUTPUT_2:3


IIC input/output conditions at Ta = 25°C, $V_{CC} = 5V$

Deservator	Complete al	Standard		High	Unit	
Parameter	Symbol	min	max	min	max	Unit
SCL Frequency	FSCL	0	100	0	400	kHz
BUS free time between stop - start	t _{BUF}	4.7		1.3		μS
HOLD time of start, restart condition	tHD;STA	4.0		0.6		μS
L time of SCL	tLOW	4.7		1.3		μS
H time of SCL	thigh	4.0		0.6		μS
Set-up time of restart condition	^t SU;STA	4.7		0.6		μS
HOLD time of SDA	tHD;DAT	0		0	0.9	μS
Set-up time of SDA	^t SU;DAT	250		100		ns
Rising time of SDA, SCL	t _R		1000	20+0.1Cb	300	ns
Falling time of SDA, SCL	t _F		300	20+0.1Cb	300	ns

Refer to figure 1

(Note) Cb : Total capacitance of all BUS (Unit : pF)

IIC BUS INPUT Timing

S: Start condition

P : Stop condition

OMT06006

IIC timing

Pin Assignment

PIN	FUNCTION	PIN	FUNCTION
1	V _{CC} 5V	16	SDA
2	DA Output 0	15	CLK
3	DA Output 1	14	ADDRESS
4	N.C.	13	I/O 0
5	I/O 7	12	I/O 1
6	I/O 6	11	I/O 2
7	I/O 5	10	I/O 3
8	I/O 4	9	GND

BUS Control Register Bit Allocation

IC Address (WRITE): 011111A0

BUS Control Register Bit Allocation Map

2002.12.27

Control Register	Bit Allocations							
Sub Address	MSB DATA BITS						LSB	
	DA0	DA1	DA2	DA3	DA4	DA5	DA6	DA7
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0000 0000	PEX7	PEX6	PEX5	PEX4	PEX3	PEX2	PEX1	PEX0
	0	0	0	0	0	0	0	0
0000 0001	DA O	utput 0	*		DA Output 0		,	k
	0	0	:	*	0	0	,	k

(Bits are transmitted in this order.)

BUS Control Register Bit Allocation Map

IC Address (READ): 011111A1

Status Register E	Bit Allocations							
	MSB	DATA BITS LSB					LSB	
	DA0	DA1	DA2	DA3	DA4	DA5	DA6	DA7
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Status 1	PEX7	PEX6	PEX5	PEX4	PEX3	PEX2	PEX1	PEX0
	*	*	*	*	*	*	*	*
Status 2	(PEX7)	(PEX6)	(PEX5)	(PEX4)	(PEX3)	(PEX2)	(PEX1)	(PEX0)
	*	*	*	*	*	*	*	*

Note

Bus Control Register Truth Table

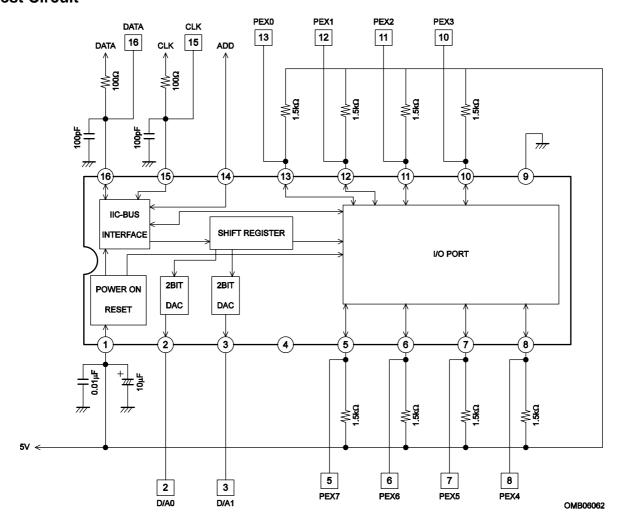
Control Register Truth Table							
Register Name	0 HEX	1 HEX	2 HEX	3 HEX			
PEX 0	Low	High					
PEX 1	Low	High					
PEX 2	Low	High					
PEX 3	Low	High					
PEX 4	Low	High					
PEX 5	Low	High					
PEX 6	Low	High					
PEX 7	Low	High					
DA OUTPUT_1	High	Mid 2	Mid 1	Low			
DA OUTPUT_2	High	Mid 2	Mid 1	Low			

Bus Control Register Truth Table

Status Byte Truth Table							
Register Name	0 HEX	1 HEX	2 HEX	3 HEX			
PEX 0	Low	High					
PEX 1	Low	High					
PEX 2	Low	High					
PEX 3	Low	High					
PEX 4	Low	High					
PEX 5	Low	High					
PEX 6	Low	High					
PEX 7	Low	High					

^{(1) &}quot;A" in the IC address is set by PIN14, Address.

⁽²⁾ For the Read Status, the first 1 byte of two bytes that have been read is used. (Attempt to read only the first 1 byte may cause failure of occurrence of the STOP condition.).


BUS Initial Conditions

Initial Test Conditions					
Register					
PEX 0	0 HEX				
PEX 1	0 HEX				
PEX 2	0 HEX				
PEX 3	0 HEX				
PEX 4	0 HEX				
PEX 5	0 HEX				
PEX 6	0 HEX				
PEX 7	0 HEX				
DA OUTPUT_1	0 HEX				
DA OUTPUT_2	0 HEX				

BUS Control Register Descriptions

Control Register Descriptions		
Register Name	Bits	General Description
PEX 0	1	I/O PORT SW
PEX 1	1	I/O PORT SW
PEX 2	1	I/O PORT SW
PEX 3	1	I/O PORT SW
PEX 4	1	I/O PORT SW
PEX 5	1	I/O PORT SW
PEX 6	1	I/O PORT SW
PEX 7	1	I/O PORT SW
DA OUTPUT_1	2	D/A OUTPUT SW
DA OUTPUT_2	2	D/A OUTPUT SW

Test Circuit

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, of otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 2006. Specifications and information herein are subject to change without notice.